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Target Netgrams: An Annulus-constrained
Stress Model for Radial Graph Visualization

Mingliang Xue, Yunhai Wang, Chang Han, Jian Zhang
Zheng Wang, Kaiyi Zhang, Christophe Hurter, Jian Zhao, and Oliver Deussen

Abstract—We present Target Netgrams as a visualization technique for radial layouts of graphs. Inspired by manually created target
sociograms, we propose an annulus-constrained stress model that aims to position nodes onto the annuli between adjacent circles for
indicating their radial hierarchy, while maintaining the network structure (clusters and neighborhoods) and improving readability as much
as possible. This is achieved by having more space on the annuli than traditional layout techniques. By adapting stress majorization to
this model, the layout is computed as a constrained least square optimization problem. Additional constraints (e.g., parent-child
preservation, attribute-based clusters and structure-aware radii) are provided for exploring nodes, edges, and levels of interest. We
demonstrate the effectiveness of our method through a comprehensive evaluation, a user study, and a case study.
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1 INTRODUCTION

G RAPHS are a powerful and universal data structure
widely used for representing relationships between

objects in many important real-world domains. Many graphs
have complex topology and various node attributes. While
a number of techniques have been proposed for this
problem [4], radial graph visualizations [5] are still widely
used for studying undirected sub-graphs with a specific
central node and its relationship to neighboring nodes
defined in terms of levels, expressing their minimal graph
distances to the central node. For example, 1-level neighbours
are neighbors directly connected to the central node. Such
graphs are often not strictly hierarchical, since some of their
nodes can be connected while being at the same level.

A popular method to visualize such sub-graphs are so-
called radial drawings [2] that place the focal node at the
canvas center and arrange its neighbours on concentric
circles. Therefore, the method automatically preserves radial
levels. However, such drawings have two major inherent
limitations: i) they are often not able to show cluster struc-
tures due to missing or heavily distorted edge information
on the circles (see the orange and green nodes in Fig. 1(a)),
and ii) placing nodes on the circle’s circumference often
results in node overlap and multiple edge crossings (see
the blue nodes in Fig. 1(a)), even when the placement is
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carefully refined by a parent-centric layout [6] or a stress-
based method [3]. The major reason for these issues is that
this method ignores edges between non-root nodes. Instead,
the recently proposed flexible radial layout [3] reformulates
the discrete radial level constraint into a continuous stress
function and linearly combines it with a classical stress
model [7] for all nodes, which allows to alleviate the first
issue mentioned above. However, the method results in
unevenly distributed nodes on the circumferences, creating
even more overlaps (see the orange and green nodes in
Fig. 1(b)).

The above issues motivated us to revisit the historic
precursor of radial graph visualization, Target sociograms [8]
(see Fig. 2), which portray social interactions within a
group of people. Here, nodes are placed inside annuli
corresponding to the radial levels, which provide more
space for showing cluster structures than traditional radial
visualizations. The relationship between nodes is depicted
with lines, readable annotations for each node are provided.
While several researchers have been inspired by this work
and proposed radial visualization techniques [9], [10], to our
knowledge no method exists for the automatic generation
of Target sociograms with a readability matching the
original illustration. Hogan et al. [11] provide an interactive
tool for users to manually generate target sociogram-like
visualizations, but no automatic method.

The design of our technique is grounded on the guide-
lines given by professional illustrators and visualization
researchers. By relaxing the constraint responsible for a
uniform node distribution along the circles, we propose an
annulus-constrained stress model that places nodes on the
annuli between adjacent circles for indicating their hierarchy
level while maintaining the network structure as much as
possible. Fig. 1(c) shows an example, where nodes of the
same levels are arranged into the same annuli, while the
blue, green and yellow clusters formed by non-root nodes
are clearly displayed. In doing so, the space for placing nodes
is larger than for traditional radial layouts, ensuring a better
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Fig. 1. Visualization of a graph of researchers selected from co-authorships in Network Science [1] using different layout methods: (a) traditional
radial layout (TR) [2], (b) more flexible radial layout (FR) [3], and (c) our Target Netgram, (TN). TR fails to show the clusters (green and orange
nodes) and results in heavy visual clutter (blue nodes), while FR does preserve these two clusters to some extent but induces heavy node overlap so
that the relationship between nodes cannot be clearly discerned. In contrast, our method is able to show cluster structures as well as accurately
place nodes into the corresponding annuli.

graph readability. To adapt stress majorization to this model,
we integrate these annulus constraints into a state-of-the-art
constrained least square optimization [12]. Doing so allows
us to solve models efficiently even for larger graphs, while
ensuring real-time performance for small and medium-sized
graphs up to 1000 nodes.

Furthermore, our model allows users to explore complex
network structures with three new constraints: i) parent-
child preservation: corresponding edges should not be too
long to prevent misunderstanding; ii) attribute-based clusters:
manually specified nodes or elements with similar attributes
are grouped together; and iii) structure-aware radii: circle
radii are adjusted non-uniformly in terms of the number
of nodes contained by each radial level or the size of the
attribute-based glyphs attached to each node. In addition,
users can change the central node. The visualization is then
transformed into a new layout with an animated transition
that results in only a few edge crossings.

To demonstrate the effectiveness of our method, we
conducted three evaluations. First, we compared it to existing
techniques for preserving graph structures and readability
by using different quantitative measures. Second, with a
user study, we investigated if users are able to accurately
perceive radial distances from our results and compared it
with existing radial layout methods in supporting graph
exploration. In addition, we conducted a case study to show
the applicability of our method for interactive exploration.

In summary, our main contributions are as follows:

• We propose an annulus-constrained stress model that
aims to satisfy radial level constraints while depicting
graph clusters, neighborhood structures and reducing
node-node/node-edge overlaps as much as possible;

• We provide various constraints and rich interaction
methods for exploring nodes, edges, and levels of
interest;

• We demonstrate the effectiveness of our method
through a quantitative evaluation, a user study, and a
case study.

Fig. 2. Two examples of target sociograms, where the neighbors of the
focal node are placed in the corresponding annuli according to their levels,
while each node contains label information. (a) Our manually reproduced
target sociogram introduced by Northway [8]; (b) the sociogram manually
created using the interactive tool provided by Hogan et al. [11].

2 RELATED WORK

2.1 Radial Graph Layouts
Radial graph visualizations aim at layouting a graph around
a focal area. The most common representation are root-
centric radial tree diagrams, where graphs are simplified
as a tree rooted in the focal node. After placing the root
at the center, classical radial drawings [2], [13] arrange the
i-level neighbors at the ith concentric circle around the center
and determine the angular width of a node’s subtree by the
number of its leaf nodes. Yee et al. [14] extend this method to
allow nodes of varying sizes and provide smooth animated
transitions for switching to a different focus. Jankun-Kelly
and Ma [15] introduce radial focus+context layouts with
non-uniform annulus widths to assist visual exploration.
Our Target Netgrams aim to retain the advantages of all
these methods while allowing to reveal graph clusters and
neighborhood as much as possible by carefully arranging
nodes inside the respective annuli.

The above-mentioned root-centric layout ensures that
nodes of the same level are on the same circle. This might
obscure interesting aspects, e.g., symmetries in the tree since
nodes with a large distance in the graph may be positioned
close-by. To address this issue, Pavlo et al. [6] propose
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a parent-centric layout that places every subtree around
its own sub-root. Huang et al. [16] suggest several angle
assignment rules for child nodes to produce a layout with
a more uniform node distribution and fewer edge crossings.
Such a layout can effectively display self-similar structures
of tree branches, but its space utilization is poor. Thus, the
root-centric layout is still the most popular method.

One major problem of tree-based representations is
that edges, which are not part of the tree are ignored so
that the underlying graph structures cannot be accurently
represented. Wills [13] suggests refining root-centric radial
layouts with an incremental force-based placement of all
edges. However, such a placement might not be able to
preserve the tree structure. Bachmaier et al. [17] enhance
the hierarchical layout algorithm by Sugiyama [18] with
curved edge routing to generate radial tree drawings,
but it is only able to handle networks with bi-connected
components. Brandes et al. [10] introduce a three-phase
force-directed model for determining node positions on the
circumference of circles while minimizing edge crossing
and overlap between nodes and edges. This method is
computationally demanding such that only small networks
can be explored. Brandes and Pich [3] formulate the radial
level constraint as a continuous distance-based constraint
and combine it with a stress model [7]. Such an energy
model allows to simultaneously preserve graph distances
and radial constraints as much as possible so that clusters
might be visible. However, it often distributes nodes on
the circular lines unevenly, resulting in stronger overlap.
In contrast, our annulus-based stress model places the i-
level node in the range of the ith annulus, providing more
space for revealing structures with less overlap. To improve
readability, our model determines the annulus width in terms
of node information and uniformly distributes the nodes
across the corresponding annulus.

Our model is similar to Dig-Cola [19], which places nodes
in a directed graph between two adjacent hierarchical levels
for better showing the structure. However, in contrast to
them, Target Netgram works for a radial visualizations, con-
siders readability constraints and provides more interactions.

2.2 Radial Visualization Methods
Radial representations play an essential role in visualization
as a distinct design metaphor. They originate from the
19th century when pioneers such as William Playfair [20]
and Florence Nightingale [21] used pie and rose charts
for presenting percentages. In the 1990s, the term radial
visualization was introduced by Hoffman et al. [22] for a
distinct visualization method. Due to aesthetics and space
efficiency, it is commonly used for visualizing four kinds
of data: hierarchical structures [23], relationships between
entities [24], ranking of search results [25], serial periodic
data [26] as well as multi-dimensional data [27]. Our special
interest lies in their inherent intuitiveness for visualizing the
relationship in graphs.

The most similar radial representation to a Target
Netgram, is the above-mentioned target sociogram introduced
by Northway [8] for showing interpersonal relationships in
a group of people. It places nodes inside concentric circles
whose radii increase, while the status level of the nodes

Fig. 3. Classical radial drawing and more flexible radial layout: (a) the
result of radial drawing, where the nodes in each layer divide the circle
(360 degrees) into sectors, with each node corresponding to one sector;
(b) results generated by only using the stress model, which reveals two
clusters but cannot place the nodes on the circles; (c) results generated
by the more flexible layout, which shows clusters and places the nodes
on the circles.

decreases, with the most important nodes in the center.
Later, Northway discussed an interactive version of target
sociograms [28] where nodes represented by pegs can be
moved and relationships represented by rubber bands can be
stretched. To mimic Northway’s target sociograms, Brandes
et al. [10] proposed an energy-based placement method with
carefully designed forces to satisfy aesthetic and readability
criteria. However, the resulting visualizations place nodes
on the circumference instead of annuli, making it hard to
visualize large numbers of nodes. Our method addresses this
issue and provides more flexible interactions.

A few empirical evaluation have been conducted to
compare radial representations with their Cartesian coun-
terparts and to study their effectiveness. It is shown
that the radial representation performs worse in terms of
accuracy and completion time for certain tasks [29]–[32]. For
example, traditional and orthogonal tree layouts significantly
outperform radial tree layouts for some tasks (e.g., finding
the least common ancestor) with respect to completion
time [33], [34]. For other tasks, radial representations
have their strengths. Diehl et al. [35] found that radial
visualizations seem to be more effective for focusing on a
particular dimension (e.g., persons). Albo et al. [36] compared
three radial visualizations for multi-dimensional data and
found that Radar charts were the least effective, while the
performance of Flower Charts and Circle Charts depend
on the task. Likewise, we evaluated two radial layouts for
visualizing graphs: a root-centric radial layout [2] and a
stress-based radial layout [3] in comparison to our method.

3 TARGET NETGRAMS

The primary goal of this work is to automatically produce
radial layouts for a better support of graph analysis. Before
elaborating our method and interaction techniques, we first
briefly describe two most related methods and then the
design requirements we followed.

3.1 Most Related Methods and Limitations

Radial Drawing. This method places the focal node at the
canvas center and then arranges all nodes onto concentric
circles around the focus. For each node, the corresponding
circle is determined by its level, first level nodes lie on the
smallest inner circle. The angular position of a node on its
circle is determined by the sector whose angle is proportional
to the number of leaf nodes in the subtree rooted at that node
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(see Fig.3 (a)). This method is simple but it does not consider
the edges between nodes, resulting in the fact that cluster
and neighbor structures of the graph are lost (see Fig. 1(a)).
More Flexible Radial Layout. Alternatively, Brandes and
Pich [3] proposed to solve the radial layout by adapting a
stress model [7], which minimizes the sum of the squared
distance differences between all pairs of graph nodes. It
models the radial level constraint as a distance constraint
between each node to the focus node (for short constraint
stress), and combines it with the original stress model. Hence,
it obtains the positions of all nodes X by minimizing the
following objective:

arg min
X

∑
i 6=c

λ

d2
ic

(||xi − xc|| − dic)2 (1)

+
∑
j<i

1− λ
d2
ij

(||xi − xj || − dij)2,

where xc is the coordinate of the central node c, dic and dij
are the shortest path distances between two nodes i and c or
i and j, respectively. For a pre-defined number of iterations
nI , the weight λ(t) at the tth iteration is

λ(t) =
t

nI
.

In other words, the stress model plays a major role at the
early iterations but its influence gradually decreases and
finally only the constraint stress has an influence. In doing
so, it is ensured that nodes are placed on the circles.

Figs.3(b,c) compare the results generated by only using
the stress model and the extended model. It shows that
this method better reveals cluster structures and maintains
hierarchy constraints. However, this method might lose the
cluster structures and also suffer from severe visual clutter
for medium-sized graphs because of the limited space on the
circles (see Fig. 1(b)).

3.2 Design Requirements
Based on previous investigations [37]–[39], one of the typical
graph analysis tasks is to investigate the topology around a
central node, which depicts the hierarchal structure between
the center and its neighbors, graph clusters formed by
neighbors, and node attributes. Accordingly, the visualization
to be designed should clearly reveal this information as much
as possible, while providing rich interactions for an effective
exploration. Namely, there are three design requirements:

• DR1: Satisfy the radial level constraint to facilitate
investigating graphs based on a central node;

• DR2: Maintain cluster and neighborhood structures
to allow for easy exploration of local graph topology;
and

• DR3: Distribute the nodes evenly within the concen-
tric circles to reduce clutter in visualization.

Although positioning nodes onto the annuli between
adjacent circles rather than on the actual circles does not
strictly satisfy DR1, we speculate that it does not influence the
perception of the radially placed hierarchical structures. In
DR2, the cluster and neighborhood structures are maintained
by preserving graph-theoretic distances between all nodes,

while DR3 helps for reducing node overlap and edge
crossings.

The key challenge in meeting these design requirements
are the conflicts and trade-offs between them. The classical
radial drawing [14], [15] satisfies DR1 by arranging nodes
with varying sizes on circles. However, uniformly placing
nodes along the circular lines obscures 2D network structures
(see the orange and green clusters in Fig. 1(a)). In contrast,
flexible radial layouts are based on stress models and non-
uniformly place nodes on the circular lines so as to meet DR1
and DR2. However, their placements are likely to violate DR3
since they result in fragmentation of clusters (see the green
cluster in Fig. 1(b)). Moreover, both methods suffer from
significant node overlap, see the blue cluster in Fig. 1(a) and
the orange cluster in Fig. 1(b). The major reason is that they
are constrained by the limited space on the circular lines. To
address this issue, we follow the design practices for Target
sociograms that position nodes onto the annuli between
adjacent circles (see the example in Fig. 1(c)) . This strategy is
consistent with the Gestalt principle of Proximity [40] saying
that nodes within an annulus between any two consecutive
concentric circles are considered as a group with the same
radial level. In doing so, all requirements can be satisfied.

3.3 Annulus-constrained Stress Model
Based on the three requirements described above, we
introduce an objective function consisted of three terms:
i) the level constraint meets DR1 by placing nodes with level
k on the kth annulus; ii) the stress term satisfies DR2 by
minimizing the stress error between all pairs of nodes to
ensure a good representation of global structures; and iii) the
angular term (DR3) requires that the nodes are uniformly
placed within annuli. Although the level constraint and the
angular term both can be modeled in polar coordinates,
the structure term involves the Euclidean distances among
all pairs of nodes positioned in different concentric annuli
and thus we still model the whole objective with Euclidean
distances.

Accordingly, we formulate our radial layout as an
optimization problem to solve for the positions of all nodes X
using the following two-fold objective and a hard constraint:

arg min
X

l∑
k=1

∑
i∈Ωk

ωa
k,i||xk,i − xc −Rkek,i||2

+
∑

i,j∈Ω
ωs
i,j(||xi − xj || − dij)2 (2)

s.t. ||Rk−1||2 ≤ ||xc − xk,i||2 ≤ ||Rk||2, i ∈ Ωk,

where xc is the coordinate of the central node, ek,i is an
ideal orientation initialized by the classical radial layout
algorithm [14], ωa

k,i and ωs
i,j are the weights for the angular

and stress terms in a range of [0,1], l is the level of the input
graph, Ωk is the set of nodes on the kth level with the number
nk, and Ω is the set of all nodes in every set Ωk, dij is the
target shortest path distance between two nodes i and j, and
Rk the radius of the kth circle. By default, the radius of the
kth circle is Rk = kγ and xc is the canvas center. Since the
ordering of nodes might change during the iterative process,
we re-initialize ek,i based on the obtained X at each iteration.

The first term in Eq. 2 can also be treated as the stress
term between all neighbors and the central node, which
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can be solved in a quadratic way. Based on the stress
majorization [41], [42], we combine it with the second term
(the stress constraint between alters) as the vector form:

arg min
X

∑
i,j∈Ω∪{c}

ωi,j ||xi − xj − dij ||2 (3)

s.t. ||Rk−1||2 ≤ ||xc − xk,t||2 ≤ ||Rk||2, t ∈ Ωk,

where ωi,j is the weight for the corresponding edge defined
as d−2

ij , and dij is pre-defined for the edges targeted to the
central node but is undefined for the other edges. We call
this model a annulus-constrained stress model.

Differences with the more flexible radial layout (FR).
Compared to the extended stress model of FR (see Eq. 1),
there are three major differences. First, the annuli-based hard
constraint provides more space for node placement but does
not influence the perception of hierarchical structure (see
Section 4.2). Second, we represent the constraint stress in
Eq. 1 as the angular term, which further requires the nodes
to be uniformly placed within annuli. Last, all three terms
always have the equal influence on the final result, rather
than determining the layout with one term.

3.4 Solving the Constrained Optimization
After writing Eq. 3 in matrix form and differentiating it with
respect to X, we set the derivative to zero, which yields us:

LX = JD, (4)

where L is an n × n weighted Laplacian matrix, J is an
n × s (s = n(n − 1)/2) matrix with each column storing
the weight of an edge vector, and D is an s × 2 matrix
consisting of all pairwise edge vectors. Following the stress
majorization method by Wang et al. [42], Eq. 4 can be solved
by alternating between finding the optimal edge vector
orientations D (O-step) and searching for node positions
X (P-step). However, there are two major differences: i) the
method has quadratic inequality constraints and thus the
P-step cannot be solved by a simple least-squares approach;
and ii) the edge vectors targeted to the central node need to
be re-initialized at the O-step by first projecting the nodes
in Ωl to the corresponding circle to obtain an appropriate
ordering and then determining edge orientations with the
classical radial layout algorithm [2] from level l to 1.

Fig. 4 illustrates one iteration of applying the O- and
P-step to an initial layout (see Fig. 4(a)). Here, each node Pi

at the second level is projected to a position on the second
circumference (see Fig. 4(b)), then all projected positions are
adjusted by the radial layout algorithm (Fig. 4(c)), and finally
a new evenly distributed layout is obtained by using all new
edge vectors e2,i (Fig. 4(d)).

The customized P-step is as follows: with fixed D, solving
X is a constrained least-squares problem [43]. However,
existing solvers [12], [44] can only handle box constraints
or upper bound quadratic constraints, whereas we want to
constrain the solution to an annulus. Hence, we adapted
the state-of-the-art constrained least squares solver of Mead
and Renaut [12] to our problem. The result is shown in
Algorithm 1, which consists of two major parts for handling
upper and lower bounds.
Lower Bound. For a node xi,k with a distance to xc less than
the lower bound Rk−1, the stress constraint (||xi,k − xc|| −

Fig. 4. Process of determining edge vectors from the central node to its
neighboring nodes during each iteration of our optimization: (a) result of
the previous iteration is used as initial layout; (b) projecting the outside
nodes onto the corresponding circle. (c) Edge vectors are determined by
the projection order of the nodes and a classical radial layout. Vectors of
inner nodes are determined by their outside neighbor nodes according to
the radial layout; (d) result after one iteration.

Algorithm 1 P-step using Constrained Least Squares
1: initialization:X̄ = [xc, ...,xc]T , C−1 = diag(1/R2

i ), β = 1, ε = 0.01
2: iter = 0
3: Y = X− X̄
4: while Nodes beyond the boundary exist do
5: iter += 1
6: Solve (LT L + C−1)Y = LT (JD− LX̄) for Y
7: β = 1/(1 + iter/10)β
8: for k from 1 to l:
9: for i in Ωk :

10: if ||yi||2 > R2
k : (C−1)ii = (βC)−1

ii
11: else if ||yi||2 < R2

k−1: ωi,c = (1 + ε)ωi,c, ωc,i = (1 + ε)ωc,i

12: end while
13: X = X̄ + Y

Rk)2 is not satisfied. Thus, we increase the corresponding
weight ωc,i and ωi,c to fit the lower bound (see line 11). To
guarantee that the local optimum is close to the lower bound,
we set ε to 0.01.
Upper Bound. By treating the upper bound constraint as a
penalty term weighted by Rk, we re-write Eq. 4 as:

min ||LX− JD||2 + ||C−1/2(X− X̄)||2 (5)

where C = diag(βR2
i ), Ri = Rk for i ∈ Ωk. X̄ is an array

with n duplicated central node positions xc. The parameter β
starts with 1 and decreases with each iteration. Following the
original constrained least square approach [12], we update β
by 1/(1 + iter/10)β (see Line 7). If xi is beyond the upper
bound, (C−1)ii will be increased (see line 10), pushing xi

towards xc at each iteration. By doing so, the upper bound
is met after a few iterations.

For easily checking whether xi is positioned in the
corresponding annulus, we write Y as X − X̄ and set the
derivative of Eq. 5 with respect to Y to zero:

(LTL + C−1)Y = LT (JD− LX̄), (6)
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Fig. 5. Illustration of convergence. Result after (a) 1st iteration; (b) 10
iterations; (c) 20 iterations; and (d) 30 iterations.

which is a linear system (see line 6).
The most time-consuming part of our algorithm is

iteratively solving Eq. 6. We compared different solvers [45]
such as gradient descent-based methods, conjugate gradient,
and Cholesky decomposition and found that the stochastic
gradient descent solver [46] is the most effective in our
experiments. Fig. 5 shows the convergence by showing
intermediate optimization results. Here, the result after the
30th iteration almost satisfies all constraints that show the
cluster structures and place nodes in the corresponding
annuli.

Noted that Algorithm 1 cannot ensure feasible solutions
for the constrained optimization in all cases (see Section 4.3).
We address this issue by simply moving the node xk to the
kth circle if ||xk−xc|| > Rk holds; and to the (k−1)th circle
if ||xk − xc|| < Rk−1 holds.

3.5 Structural Constraints
During the interactive exploration, users may want to
emphasize some structures at some levels. For better
supporting such exploration tasks, we implemented three
new constraints based on typically wanted graph charac-
teristics: parent-child preservation, attribute-based clusters,
and structure-aware radii. In addiction, we provide smooth
animations for users to switch the central nodes of interest.
Parent-Child Preservation. This constraint aims at avoiding
long parent-child edges, which might let some nodes wrongly
be seen as children of neighboring parent nodes (e.g., node P
in Fig. 6(a)). The constraint is imposed by finding new edge
vectors for such edges in the O-step. Specifically, we first
detect these edges from the previous layout Xt by checking
whether the angle between the two nodes of the edge and the
central node is smaller than a threshold (π/2). In this case, we
extend the edge vector to intersect with the corresponding

Fig. 6. Illustration of our three constraints: parent-child preservation (a,b),
cluster formation (c,d), and structure-aware radii adjustment (e,f).

circle and take the line segment in the other direction as the
new edge vector (see the node P’ in Fig. 6(a)). Having most
long edges removed this way, we compute the new node
position with the P-step (Fig. 6(b)).

Although various other existing constraints, such as node
non-overlap and minimizing edge crossings [42], [47], can be
applied, they might end up in meaningless positions without
considering the hierarchical structure. To address this issue,
we check whether the positions adjusted by applying these
constraints fit with the hierarchical structures. If not, we use
the position adjusted by the above parent-child preservation
constraint. Node Q in Figs. 6(a,b) is an example, where the
position Q̄ adjusted by the node non-overlap constraint is
located at the first circle. Thus, we use the position Q’ to
define the new edge vector.
Attribute-based Clusters. In the final layout, users may like
to group some nodes together in terms of node attributes. To
achieve this goal, we introduce an additional term to Eq. 3:∑

i,j∈Θ
ωi,j ||xi − xj ||2 (7)

where Θ is the set of nodes to be grouped together and ωi,j

is 1.0 by default. Figs. 6(c,d) show how this constraint forms
a small cluster of orange nodes.
Structure-aware Radii. We provide flexible interaction
methods for exploring graph structures. First, the annulus
width can be altered by requiring that the area of each
annulus is proportional to the contained number of nodes.
Accordingly, the circle radius can be defined as:

R1 = Rl

√
n1/n ,Rk = Rk−1

√√√√ k∑
1

ni/

k−1∑
1

ni, (8)

where Rl is the radius of the maximal level l.
Users can further magnify the radii of interesting levels

for attaching attribute-based statistical (or other) charts to
nodes. Fig. 6 shows an example, where the third annulus
with the most nodes in (e) is extended to better show the
orange cluster and the first annulus in (f) is further enlarged
to place the bar charts associated to each node.
Smooth Animation. When a new central node is selected, we
provide a smooth animation for switching from the current
layout to the next. To reduce excessive edge crossings, we
extend the radial layout-based animated transition by Yee
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et al. [14] in two aspects. First, we use the same animation
speed for all nodes, helping users track individual nodes
easily. Second, we separate the animation into stages: one
for moving edges with clockwise rotation and another for
counter-clockwise rotation. For the effectiveness of such an
animation, please see our supplemental video.

3.6 Placement on Annuli vs. Circles
Our stress model positions all nodes onto the 2D annuli
between adjacent circles instead of on the circles itself as
done by traditional radial drawings [2]. Here we analyze
the maximal numbers of non-overlapping nodes that can
be placed by these two methods. Suppose each node is
shown as a circle with radius r, the maximal number of non-
overlapping nodes that can be placed on the kth annulus by
a Target Netgram, is:

Nk =
πR2

k − πR2
k−1

πr2
. (9)

Likewise, the maximal number of non-overlapping nodes
placed on the kth circular line by the traditional radial
drawings is:

Mk =
2πRk

2r
. (10)

where the occupied arc-length by each node is approximated
by its diameter. Substituting the default radius Rk = kγ to
Eq. 9 and Eq. 10, the ratio of the maximal non-overlapping
nodes between these two methods is:

ρk =
(2k − 1)γ

kπr
=

(2k − 1)

kπ
ρ (11)

where ρ is γ/r. Since γ is often much larger than r, our
method theoretically creates less node/edge-node overlaps
for placing a given input graph. Note that this derivation
is based on the assumption that all nodes are uniformly
distributed, which often is not satisfied due to the stress term
in Eq. 2.

4 EVALUATION

We implemented our technique in C++ and drew the layout
with OpenGL. We tested it on a computer with a 2.60GHz
Intel Core i7 processor and 16GB RAM, running on Windows
10 (64 bit). To confirm that our approach satisfies the three
design goals, we performed two comparisons by using: (i)
numerical measures (see Section 4.1) and (ii) user studies
(see Section 4.2) as well as a case study with real-world
datasets (see Section 4.3). The comparisons include three
state-of-the-art methods: traditional radial layout (TR) [2]
and flexible radial layout (FR) [3] and the classical stress
model (SM) [7]. Although SM is not designed for radial
visualizations, it performs well in preserving structures of
general graphs [48]. All these methods are implemented
using the same configurations as our Target Netgrams (TN).

4.1 Quantitative Comparison
Here we compare results for radial graph visualizations
produced from various methods in terms of structure
preservation, graph readability and runtime performance.

TABLE 1
Characteristics of the used datasets including average number of nodes
(NN), average node degree (ND), and average running time (second) of

different algorithms.

ca-HepTh Vispubdata ca-GrQc LastFM

NN 272.5 260 472.5 445.5
ND 2.57 3.18 4.50 4.39

TN 1.4 1.2 2.3 2.4
SM 1.3 1.1 1.6 1.6
TR 0.01 0.01 0.01 0.01
FR 5.3 4.1 14.3 14.7

Datasets. To construct our experimental data, we extracted
nodes from real-world datasets as the central nodes to form
subgraphs. Each subgraph consists of a random range of
neighboring nodes of the central node. Because of many
edges between all non-root nodes, such graphs are not strictly
hierarchical. We used four real-world datasets: ca-Hepth
[49], Vispubdata [50], ca-GrQC [49], and LastFM [51]. For
each dataset, we randomly selected 100 central nodes with a
random neighborhood radius between 3 and 7; that is, 100
subgraphs were formed as the inputs to these techniques.
Table 1 shows the characteristics of these subgraphs.
Measures. To assess the structural preservation of each
method, we employed three layout quality metrics: average
stress, average radial stress, and neighborhood preservation
degree [52].

• Average stress [41] is a normalized sum of the squared
differences between pairwise visual distances in
the layout and their target graph distances in data
space, where a smaller value means better distance
preservation.

• Average radial stress is the average stress between all
nodes and the central node.

• Neighborhood preservation degree is the normalized
Jaccard similarity [53] between the input graph and
its shape graph, which is a k-nearest neighborhood
graph constructed from the placed nodes in the
layout.

To assess the graph readability, we measure the quality of
each layout with three measures: node non-overlap degree,
node-to-edge distances and crosslessness [54]:

• Node non-overlap degree is the ratio between the
number of non-overlap nodes and the number of
all nodes;

• Node-to-edge distances computes the average distance
from each node to its nearest edge; and

• Crosslessness is the ratio between the number of edge
pairs without crossing and the number of all edge
pairs.

All of them are normalized to [0,1], and large values indicate
better readability.

4.1.1 Result Analysis
Screen shots of the results generated by all four layout
methods on each dataset and the according scores for each
measure can be found in the supplemental material.
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Fig. 7. Comparison of the preservation of distances using the average
stress (a) and the average radial stress (b), where a smaller stress value
is better.

Fig. 8. Comparison of the preservation of neighborhood structures using
varying neighborhood sizes k on four datasets. A higher value indicates
better neighborhood preservation.

Results of Structure Preservation. Figs. 7 and 8 summarize
the results of our quantitative comparison in structure
preservation.

Fig. 7(a) shows the average stress of each method on the
four datasets, where TR is the worst and TN is superior to FR
but slightly worse than SM. This is plausible, since TR does
not consider the graph distances, while the others all are the
stress-based methods. Compared to SM, TN and FR limit
node placements on annuli and circular lines, respectively.
Since the annuli provide more space, TN can better preserve
graph distances than FR. In addition, TN results in similar
average stress values on the four datasets. This indicates that
Target Netgrams perform consistently well across complex
data sets.

Fig. 7(b) shows the average radial stress of the methods,
where TN and TR perfectly preserve the radial structures
for all nodes. In contrast, SM is the worst, since it does not
take the radial constraint into account. By placing nodes into
the annuli instead of circular lines, our method has a good
trade-off in satisfying distance and radial constraints.

Fig. 8 shows the neighborhood preservation of the

Fig. 9. Comparison of the graph readability using the node non-overlap
degree with varying ρ defined as the ratio between unit annulus width and
node size on four datasets. A higher value indicates less node overlap.

methods with varying k. To learn how well structures of
different scale can be preserved, we set k to a range from
1/4 to 1/2 of the node number in each graph. On all four
datasets, TN performs better than FR in maintaining the
neighbor structure, but slightly worse than SM, while TR is
the worst. The similar performance of TN and SM is plausible
here, since both ensure that nodes are placed for preserving
graph distances. While the stress term in FR helps for a better
neighborhood preservation than TR, its performance is still
constrained by the limit space on the circles in contrast to
the one provided by the annuli for TN. Regarding the poor
performance of TR, it ensures that nodes are uniformly placed
within their corresponding circles without considering the
graph neighborhood structures.

In summary, Target Netgrams perform better than most of
the baselines on these three performance metrics. Although
stress and neighborhood preservation degrees of a Target
Netgrams are slightly worse than that of SM, it is able to
maintain the radial level constraints.
Results for Graph Readability. Fig. 8 shows a comparison of
the node overlap for all layout methods on the four datasets
with varying ρ, the ratio between unit annulus width γ and
node size r defined in Eq. 11. No matter what value of ρ,
FR performs the worst. As the increase of ρ, the node size
becomes smaller and the node none-overlap degrees of all
methods quickly increase.

When ρ is not large, SM performs the best and TN ranks
second and both are much better than TR. For reasonable
large node sizes (ρ being 10-18), our TN yields good
readability, especially for small datasets. Due to the annulus
constraint, TN is inferior than SM for large datasets (ca-GrQC
and LastFM) but is better than FR and TR. This indicates
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Fig. 10. Comparison of the graph readability using average node-to-edge
distance (a) and crosslessness (b). For both measures, a large value
indicates better graph readability.

that our TN ensures a uniform distribution of nodes while
successfully using the stress model to keep distances between
neighbor nodes in each annulus.

With increasing ρ, the non-overlap degrees of all methods
increase. When ρ is larger than a specific value, TR performs
similarly and even better than TN on the given datasets. This
is reasonable, since TR uniformly positions nodes on circles,
but the stress model-based methods work in a non-uniform
way. However, the node size is often pre-determined and
too small sizes make the structures hardly discernible. Thus,
TN performs better than TR for a large input graph with a
reasonable ρ.

Fig. 10(a,b) show the scores of node-to-edge distances and
crosslessness for each method, respectively. We can see that
SM performs slightly better than TN, while TR and FR have
similar scores but perform worse than TN on both measures.
This is reasonable, since the layout space used FR and TR is
smaller than TN and the one of TN is smaller than SM.

Compared to FR, TN further attempts to uniformly
distribute nodes within annuli by the first term in Eq. 2,
resulting in less edge crossing. The tested methods have
similar performance on all three measures. In general, TN
performs better than TR and FR, but worse than SM, whereas
SM cannot preserve the radial level constraint as shown
in Fig. 7(b). Similarly to SM and TN, FR is a stress-based
method, yet its readability is the worst. We speculate the
reason is that it arranges nodes on the circular lines, which
has limited space for revealing graph structures.
Runtime. Table 1 shows the average runtime of each
method on different datasets. The runtime of our method is
reasonable, i.e., less or around 1.5s and 2.5s on average for
small and large graphs, respectively. SM performs similarly
to our method while being slightly faster on large datasets. In
contrast, FR is much slower than TN and SM, due to its used
gradient descent solver. TR exhibits a much shorter runtime,
because it has only a linear time complexity. However, based
on the previous results, its visualizations perform poorly
in preserving distances and neighborhood structures and
therefore do not maintain readability.

Taking all findings together, we conclude that Target
Netgrams maintain a good balance between preserving
graph structures and readability. With reasonable runtime,
our method performs better than traditional drawings,
especially in distance preservation and node non-overlap
while being significantly better than flexible radial layouts in
multiple aspects.

4.2 User study
We further evaluate Target Netgrams (TN) in terms of human
perception by conducting a user study to investigate if TN
enables users to effectively locate radial levels and facilitate
visual exploration of the sub-graphs with central nodes.

4.2.1 Experimental Design
Since SM is not a radial-based method, we only investigated
three layout techniques in our user study: TR, FR, and TN.
Experimental Task. To assess the effectiveness of the
approaches, we adapted a task proposed by [55] for exploring
subgraphs with central nodes: Given a central node, look at
all nodes with the radial level k and find the one with the
highest degree; k is randomly chosen from 2 to 4. Namely,
this task consists of two sub-tasks: i) locating the circle
or annulus with the radial level k and ii) identifying the
node with the highest degree. In doing so, the capabilities
of each method in supporting the exploration of radial
level information and local graph structures both have to
be examined. To make the exploration easier, participants
can click on a node to highlight the connecting edges and
indicates its node ID which is randomized in each trial.
Participants completed their tasks by entering node IDs.
Hypotheses. We hypothesized that our approach would
perform similarly in locating the radial level but generally
be more effective than the benchmark methods on the whole
task:

H1: TN performs similar to the benchmark conditions (FR
and TR) on the sub-task of locating the given radial
level.

H2: TN outperforms the benchmark conditions (FR and
TR) on the whole task.

Data Generation. We chose the CiteSeer dataset [56] with
3324 nodes and 4731 edges, then randomly selected nodes
as the central nodes and constructed a subgraph for each of
them. The subgraphs were extracted by limiting the nodes
with a maximum graph distance of 5 to the central node.
We set this parameter empirically to ensure that participants
could smoothly complete the task with a reasonable cognitive
load. To test whether our method really works for medium-
sized graphs, we selected five subgraphs with more than 512
nodes [55] and generated three layouts for each subgraph by
three layout methods (see an example in Fig. 11), resulting
in 15 trials for total. We randomly choose a k value for each
subgraph and ensure that all three k values (2,3,4) have been
tested. The average node number and degree of these five
subgraphs are 664.4 and 2.26, respectively.
Participants and Apparatus. We recruited 22 computer
science students and researchers (14 males and 8 females)
from a local university, with an average age of 21.6. All had
a normal or corrected-to-normal vision. All participants had
knowledge about basic graph concepts, such as shortest path,
node degree, etc. In terms of the apparatus, we used the
same setup as introduced in Section 4. A fixed window size
(2048×2048 pixels) was used for showing the visualization on
a 30 inch display, where the central node of each visualization
was displayed in the window center. Participants used a
mouse and keyboard to interact with the visualization.
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Fig. 11. One example of the sub-graphs employed in the user study
with three layout methods, where a node in yellow is selected and the
connected edges are highlighted in blue.

Procedure. At the beginning of the study, participants were
introduced to the graph layout techniques and saw examples
in a tutorial. We then described the graph exploration task
and demonstrated the usage of the study system. Specifically,
we explained that the distance between each node and
the central node is reflected by the index of the circle or
annulus contained the node. Participants were then given
three practice trials, each for one technique, during which
they could ask questions.

Then, participants were asked to complete the 15 trials
in the actual study. The trials were presented to the
participants with random order. The study system recorded
the answers of the participants and the time taken for each
trial. Participants can take a short break after each trial and
the whole study took about 20 minutes on average. After
each participant finished all trials, we conducted a short
interview with one question: ”Which layout style do you
prefer?” and ”Why do you prefer it?.”
Analysis. We used non-parametric tests to examine the
hypothesis H2. Namely, we applied Kruskal-Wallis H tests
to compare the means of completion time and accuracy
across techniques, and Mann-Whitney U tests for pairwise
comparisons.
Results. We found that all selected nodes are located on the
correct circles or annuli, and thus H1 is confirmed. However,
our results partially support H2 that TN outperforms the
other layout techniques. We observed a significant effect of
the layout technique on the estimation accuracy (p < 0.001).
Fig. 12(a) shows that TN leads to higher accuracy than the
other methods. A post-hoc analysis showed that the accuracy
of TN is significantly higher than that of TR (p = 0.004) and
FR (p < 0.001). However, there is no significant difference
on completion time(p = 0.941), although TN takes slightly
less time than the others (see Fig. 12(b).

68.2% of participants claimed that the annulus style (TN)
works better than the circle style (TR and FR). For instance,
one participant mentioned that ”Since there are many edges
around the nodes with large degrees, I searched in the area
with dense edges first. However, for the cases where the
nodes are all on the circles, too many adjacent nodes overlap
in dense regions, making it difficult for me to identify which
node has more edges. By contrast, for the cases where nodes
are placed in annuli, there are less overlap even in dense
areas and thus I can easily find the answer.”

4.3 Case Studies
Here, we investigate the usefulness of the interactions
provided by a Target Netgram, for graph exploration and

Fig. 12. Experimental results for different techniques: (a) task accuracy
(a higher value is better) and (b) task completion time (a lower value is
better). Error bars indicate 95% CI.

show its effectiveness for dense graphs.

Interactive Exploration. Here, we explore a collaboration
network which was extracted from the DBLP dataset [57].
The network allows a user to quickly learn about other
researchers in the area of a researcher, and use this as a
starting point to understand research in this field. Fig. 13
shows the layouts generated by our method based on such
a network, which contains 88 nodes (researchers) and 170
links (co-authorship of researchers). To help the user sorting
out the core structure of the network, we only show the
edges between two researchers if the number of collaborative
publications is greater than 5. As shown in Fig. 13(a), a Target
Netgram, not only ensures that the nodes strictly satisfy the
radial level constraint, but also keeps the local topology
of the network as much as possible. For example, we can
observe local connections among the yellow nodes.

However, in Fig. 13(a), the space on the first annulus is
limited so that we cannot show any other information about
the researchers closest to the central node. Then the user
zooms into the first annulus, which enlarges the annulus
width for the first layer (Fig. 13(b)). With enough space,
a Target Netgram, allows to further displays some node
information using statistical charts, so that the user can
access details about the network besides its topology while
maintaining the network structure.

The user can also adjust the layout based on node
attributes through interaction. For example, researchers
marked in light blue in Fig. 13(b) worked at or graduated
from the same university but the collaboration between them
is not close. To reveal their potential partnership, the user
can utilize the cluster formation constraint (as described in
Section 3.5) to gather them together, as shown in Fig. 13(c).
After applying this constraint, Tobias, who was too far away
from the other researchers with the same attribute, is moved
closer to other blue node, forming a new cluster.

During the whole interaction, the local structure of the
network is not distorted because of the stress constraint.
For example, the local topology of the yellow cluster is
always well expressed in all three situations. This again
demonstrates the effectiveness of a Target Netgram, in
assisting the exploration of the local neighborhood of a
selected central node.

Dense Graphs. For all above examples, our solver can find
layouts that meet three design requirements. However, it
might fail for some dense graphs. Fig. 14(a) shows an
example for a graph with 461 nodes and 5698 edges [58].
On the left of Fig. 14(a), the purple nodes are misplaced to
be outside of the second circle that violates DR1. To correct
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Fig. 13. Interactive exploration of a collaboration network extracted from the DBLP dataset. (a) Initial layout generated by Target Netgram,. (b) A user
zooms into the first annulus and adds pie charts on the corresponding nodes. (c) Layout after the user applied the constraint of attribute-based
cluster.

Fig. 14. Visualizing a highly dense graph extracted from the ego-facebook
network [58]. (a) Results generated by Target Netgrams, where the purple
nodes in the left layout do not meet DR1 but are corrected and placed
onto the second circle in the right. (b,c) Results generated by TR and FR,
respectively, where the two clusters shown in (a) are obscured.

them, we move them to the second circle as shown in the
right of Fig. 14(a). Although such correction might destroy
the graph structures to some extent, our Target Netgram,
still clearly shows two major clusters. In contrast, TR and FR
densely arrange all nodes on the circles without revealing
any cluster, see Figs. 14(b,c).

5 DISCUSSION, CONCLUSION AND FUTURE WORK

Target Netgrams allow to create radial graph visualization
analogous to hand-drawn target sociograms. It is achieved
by a novel annulus-constrained stress model, which requires
node positions to meet radial level constraints. In doing so,
nodes are strictly placed in the corresponding annuli between
adjacent circles, while clearly revealing the graph structures.

We further provide three constraints such as parent-
child preservation, attribute-based clusters, and structure-

aware radii for users to adjust edge angles, node positions
and levels of interest. In addition, users can switch to
another central node of interest through a smooth animated
transition. To demonstrate the effectiveness and usefulness
of our method, we performed a user study, quantitative
comparisons, and a case study.

So far, Target Netgrams yield good results for graphs
with around 1000 nodes. For data with more nodes, all radial
layout methods produce dense and crowded visualizations,
whereas our method enables users to interactively explore
levels and nodes of interest through applying structural
constraints and radii adjustment. To further enhance the
number of possible nodes, we plan to investigate graph
abstraction techniques [59] to reduce data size while
maintaining major structures. Due to the non-convex nature
of this problem (see Eq. 3), our adapted constrained least
square solver does not always find a sub-optimal solution.
In the future, we plan to explore more advanced non-convex
optimization solvers [60]. On the other hand, our annulus-
constrained stress model is a special case of boundary-
constrained layouts. In the future, we will extend the current
circle constraint to other shapes and apply this model to
different data like origin-destination maps.

Our evaluation of Target Netgrams still has limitations.
First, the user study investigated only one task that combines
radial level and node degree exploration in a graph. Tasks
focusing on other aspects, such as identifying common
neighbors, can be explored in the future. Second, the user
study focused on evaluating the layouts but not the user
interactions. While we demonstrate the useful interactivity
of our method in a case study, a comprehensive user study
is needed to further confirm its effectiveness in exploring
graphs with rich information. Third, for practical issues, we
examined our method with a subset of relevant existing
methods in our user studies. Although our quantitative
experiments compared a larger set of baselines, there is still
room for enhancing the user study with more datasets and
users.
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